An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane
نویسندگان
چکیده
This paper presents an implementation of the second-order accurate immersed interface method to simulate the motion of the flexible elastic membrane immersed in two viscous incompressible fluids with different viscosities, which further develops the work reported in Tan et al. [Z.-J. Tan, D.V. Le, K.M. Lim, B.C. Khoo, An Immersed Interface Method for the Incompressible Navier–Stokes Equations with Discontinuous Viscosity Across the Interface, submitted for publication] focussing mainly on the fixed interface problems. In this work, we introduce the velocity components at the membrane as two augmented unknown interface variables to decouple the originally coupled jump conditions for the velocity and pressure. Three forms of augmented equation are derived to determine the augmented variables to satisfy the continuous condition of the velocity. The velocity at the membrane, which determine the motion of the membrane, is then solved by the GMRES iterative method. The forces calculated from the configuration of the flexible elastic membrane and the augmented variables are interpolated using cubic splines and applied to the fluid through the jump conditions. The position of the flexible elastic membrane is updated implicitly using a quasi-Newton method (BFGS) within each time step. The Navier–Stokes equations are solved on a staggered Cartesian grid using a second order accurate projection method with the incorporation of spatial and temporal jump conditions. In addition, we also show that the inclusion of the temporal jump contributions has non-negligible effect on the simulation results when the grids are crossed by the membrane. Using the above method, we assess the effect of different viscosities on the flow solution and membrane motion. Ó 2008 Elsevier Inc. All rights reserved.
منابع مشابه
A class of Cartesian grid embedded boundary algorithms for incompressible flow with time-varying complex geometries
We present a class of numerical algorithms for simulating viscous fluid problems of incompressible flow interacting with moving rigid structures. The proposed Cartesian grid embedded boundary algorithms employ a slightly different idea from the traditional direct-forcing Immersed Boundary Methods; i.e. the proposed algorithms calculate and apply the force-density in the extended solid domain to...
متن کاملA versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed ...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملSystematic Derivation of Jump Conditions for the Immersed Interface Method in Three-Dimensional Flow Simulation
In this paper, we systematically derive jump conditions for the immersed interface method [SIAM J. Numer. Anal., 31 (1994), pp. 1019–1044; SIAM J. Sci. Comput., 18 (1997), pp. 709–735] to simulate three-dimensional incompressible viscous flows subject to moving surfaces. The surfaces are represented as singular forces in the Navier–Stokes equations, which give rise to discontinuities of flow qu...
متن کاملA preconditioned solver for sharp resolution of multiphase flows at all Mach numbers
A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008